Assessing air quality for natural ventilation in India Methods to analyze indoor air quality and energy efficiency in urban Indian buildings

Chetan Krishna (Technology Policy Program), Prof. Leslie K. Norford (Building Technologies Laboratory – Department of Architecture)

Massachusetts Institute of Technology

Abstract/Opportunity

 Buildings in India contribute to 35% of total energy demand and are expected to grow to 8x

Data/Results/Prototype

• <u>Step1: A computational approach to wind flows in urban areas:</u>

 Natural ventilation strategies have potential to reduce energy consumption by **10-30%** even in hot climates

- Ambient air pollution greatly constrains natural ventilation due to effects on indoor environment
- No integrated methods available for primary decision makers on buildings to assess IAQ along

- <u>Results</u>: wind pressure coefficients for multiple plan area densities
- <u>Step 2</u>: Expanding on CoolVent to include pollutant transport
- <u>Results</u>: Visualizations for PM2.5 concentrations, air exchange and thermal comfort in indoor zones

with building thermal performance

Proposed Solution

- An integrated approach to assess IAQ along with natural ventilation at the <u>building design stage</u>
- Comprehensive methods to model <u>airflows in</u> <u>urban agglomerations</u> (expanding prior work to account for urban densities in India)
- Expanding on <u>prior tools</u> for assessing thermal performance to include pollutant transport

- <u>Step 3 (ongoing)</u>: Assess IAQ for different building + IAQ technology intervention + urban plan scenarios
- Assessing efficacy of HEPA, ULPA and air purifiers to control IAQ

Conclusions/Value Proposition

- Expanded CoolVent for PM2.5 transport analysis in urban areas
- A first step framework for additional pollutants and wind pressure coefficient simulations for multiple urban plan densities
- Simulating effectiveness of filtration technologies to improve IAQ

Next Steps

Expand to multiple building types and geometries + expand to other

Thermal performance analysis capability

- Working with architecture firms and others to expand capability
- Making data available for public use

Acknowledgments

TATA TRUSTS

SIR DORABJI TATA TRUST • SIR RATAN TATA TRUST JAMSETJI TATA TRUST • N.R. TATA TRUST • J.R.D. TATA TRUST

Special thanks to Alonso Dominguez, Ph.D., Building Technologies Laboratory for support

<u>pollutants</u> + expand CFD approach

- Future Research: Risk perceptions of IAQ; Economic benefits of good IAQ
 - Possible off-takers: Building designers, architects, civil society

Select References

- Axley, J., & Grot, R. (1989). The coupled airflow and thermal analysis problem in building airflow system simulation. ASHRAE Transactions (American Society of Heating, Refrigerating and Air-Conditioning Engineers);(USA), 95(CONF-890609--).
- Blocken, B., & Gualtieri, C. (2012). Ten iterative steps for model development and evaluation applied to Computational Fluid Dynamics for Environmental Fluid Mechanics. *Environmental Modelling & Software, 33,* 1-22.
- Truong, P.H (2012). Recommendations for the analysis and design of naturally ventilated buildings in urban areas (Thesis, S.M.)
- Menchacha, B. and Glicksmann, L. (2008). CoolVent: A multi-zone airflow and thermal analysis simulator for natural ventilation in buildings.
 Proceedings of SimBuild, 1-8.
- Chaturvedi, V, Eom, J., Clarke, L.E. and Shukla, P.R., (2014). Long Term building energy demand for India: Disaggregating end use energy services in an integrated assessment modelling framework. *Energy Policy*, 64, 226-242.